
Python	vs	Big	Data	
"Python??	Why	Python?"	
h$ps://www.youtube.com/watch?v=Vru9xOEtOM	

What	Is	Python	
•  Python	is	a	high-level,	interpreted	and	general-purpose	
dynamic	programming	language	that	focuses	on	code	
readability.		

•  The	Python	is	widely	used	and	have	a	large	and	ac9ve	
programmer	community.	

•  It	has	a	comprehensive	and	large	standard	library	that	
has	automa9c	memory	management	and	dynamic	
features.	

•  It	easily	extensible	by	other	programming	language	
•  h$ps://www.python.org/	
•  h$ps://en.wikipedia.org/wiki/Python_(programming_language)	

Why	Python...	some	step	back...	
It's a dirty job, but someone have to do it	

•  People	needs	to	elaborate	data	in	order	to	extract	results	

data		 result	
	Transforma9on	

data		

program	

result	
	

Digitaliza0on	 Rendering	

computer	

Data	coding	
•  Digital	computers	can	handle	only	binary	signals:	sequences	of	
0	and	1	(bit	=	binary	digit)	

•  In	order	to	transform	data	by	digital	computers,	it	needs	to	
digitalize	data,	i.e.	transform	real	samples	(images,	sound,	
etc.)	into	sequences	of	bits,	packed	for	technological	and	
hostorical	reasons	into	group	of	8	bit,	called	bytes.	

•  The	meaning	of	a	sequence	is	given	by	the	format	used	to	
code	and	interpreter	the	sequence,	eg.	ASCII,	bitmap,	mp3.	

0100.0010	
0011.1100	
0100.0010	 ASCII	codes	66	60	66		 Characters	"B<B"	

BITMAP	3x8	

h5ps://en.wikipedia.org/wiki/ASCII	 h5ps://en.wikipedia.org/wiki/BMP_file_format	

Computers	at	hardware	level	
A	very	schema9c	and	simplified	draY	of	a	digita	computer	

CPU	

RAM	
	
	
	
	
	
	
	

IO	

	
	
	
	

Keyboard	

Printer	

Network	
.....	

program	

program	

data
	

data
	

Executor	

Working	area	

Storing	area	

Coding	transformations	
•  A	classical	digital	computer	transforms	digital	data	by	
following	a	program,	i.e.	a	sequence	of	commands	that	
describes	the	trasforma9ons	to	be	applied	to	data.	

•  A	program	can	be	wri$en	using	variouse	Hi-Level	
programming	languages,	i.e.	language	for	humans,	eg.	ADA,	C,	
C++,	Perl,	Python,	Java,	Pascal,	Basic.	

•  Computers,	at	hardware	level,	understand	only	a	very	trivial	
set	of	commands,	the	Assembly,	a	Low-Level	programming	
language,	a	language	for	CPUs.	

	

Hi-Level	languages	
BASIC:	
10	INPUT	"Your	name?:	",	NAME$	
20	PRINT	"Hello	";	NAME$	

	

C:	
#include	<stdio.h>		
char	*	name[100];	
int	main()	{		
				prinj("Your	name?:	");	
				scanf("%s",name);	
				prinj("Hello	%s\n",	name);	
				return	0;		
				}	
	

Python:	
name=input("Your	name?:	")	
print("Hello",name)	
	

Java:	
package	stringvariables	;	
import	java.u9l.Scanner;	
public	class	StringVariables	{	
				Scanner	user_input	=	new	Scanner(System.in);	
				String	name;	
				System.out.print("Your	name?");	
				name	=	user_input.next();	
				System.out.print("Hello	"+name);	
				}	

	
	 	 	 		

	

Assembly	

h$ps://www.researchgate.net/figure/Assembly-instruc9ons-of-an-x86-example-op9mizing-frequently-executed-pieces-of-code_fig2_3881320	

instruc9on	in	memory	used	by	CPU	 instruc9on	transliterated	for	humans	

data		

program	

result	
	

Use	computers?	start	problems!	
https://www.youtube.com/watch?v=tiq6v39YliQ	

•  Data	management	
•  Portability	

•  Code	readibility	
•  Code	maintenance	
•  Code	estensibility	

•  speed?	
•  cost!	

Develope	Code:	a	job	for	teams	
	
• Code	should	(must?)	be:	
•  readable:	projects	pass	thorugh	many	hands	and	may	
live,	from	change	to	change,	for	many	years	
•  easy	to	develope:		
•  easy	syntax	à	fast	learning	
•  not	error-prone:	syntax	should	aid	good	programming	

•  with	a	lot	of	already	made	wheels:	a	wide	library	
collec9on	of	good	func9ons	aid	to	build	up	good	code	
rapidly	(dont	reinvent	the	wheel)	
•  Cool:	a	large	connected	community	of	geeks	that	code	
with	your	programming	language	probably	have	
already	solved	all	of	your	possible	problems.	

Speed	
•  Speed	generally	conflicts	with	code	maintenance.		
•  Fast	codes	in	order	to	full	control	the	flow	of	the	
istruc9ons	(usually):		
•  is	coded	using	a	"raw"	programming	language	(eg.	C,C++)	thus	it	
result	oYen	unreadable.	

•  it	don't	use	"abstrac9ons"	for	implemen9ng	algorithm	and	
managing	data	thus	it	bacame	easy	to	make	mistakes	and	bugs	

•  libraries	are	implemented	from	scratch	in	order	to	op9mize	code	
or	remove	unused	part	of	code,	thus	"new	code,	new	bugs".	

"Don't	run	if	there	is	not	needs"	

Interpreter	vs	Compiler	
•  The	process	of	translate	from	HI	to	Low	Level	can	be	made	in	
two	way:	translate	the	program	with	a	compiler	o	execute	the	
program	with	an	interpreter				

•  Compilers:		
•  take	a	lot	of	9me	for	compile	phase	but	the	result,	the	
executable,	run	fast	on	CPU.	

•  Any	new	release	of	the	code	have	to	be	compiled	again	
•  there	no	easy	ways	to	run	the	code	step	by	step	for	test	(you	
have	to	use	a	debugger)	

•  Interpreters:	
•  designed	for	interac9ve	mode:	easy	to	debug	code	
•  code	is	executed	by	an	agent,	not	directly	by	CPU	

•  easy	to	port	to	new	kind	of	computer	

•  Not	so	fast:	each	line	have	to	be	translated	any9me	is	executed	

Speed	

C	
	
char*	
aword=malloc(typeof(char)*10);	
scanf("%s",aword);	
for	(i=0;strlen(aword);i++){	

	prinj("%c\n",aword[i]);	
}	
free(aword);	
	
+	fast:	compiled	for	the	running	CPU	
+	small	binary	
-	unreadable	
-	memory	mgmt	is	our	duty	
-	easy	to	make	mistakes	on	syntax	

python	
	
aword=input()	
for	c	in	aword:	

	print(c)	
	
+easy	to	undestand	
+easy	to	find	errors	
+memory	mgmt	is	delagated	to	
system	
-not	so	fast:	managing	object	
requires	a	background	process	that	
sink	some	cpu	9me,	it	is	interpreted.	

Speed	constrains	
•  Speed	depends	mainly:	
•  data	management:	

•  how	objects	for	data	are	create	and,	more	importants,	destroyed.	
•  how	access	to	data	is	made	respect	to	the	layered	cached	memory	

•  CPU	parallelism:	
•  modern	CPUs	are	superscalar:	can	do	many	steps	at	the	same	9me,	
concurrently,	if	the	code	permits	it.	

Data	management	
a	do-it-yourself	view	(C	style)	

INPUT	
"ABC",	1	

	A					B						C	

RAM	

1.  create	a	word	
2.  create	a	number	
3.  create	a	X	type	

4.  put	"ABC"	in	the	first	
word	

5.  put	1	in	the	first	
number		

6.  destroy	the	word	
7.  destroy	the	number	

word	type	

number	type	

X	type	

	1						

garbage	uncollected	
waste	memory	

W	
N	

X	type	(dead)	

Data	management	
a	data-as-service	view	(Java	style)	

INPUT	
"ABC",	1	

	A					B						C	

RAM	

1.  I	need	a	word	W	
for	"ABC"	

2.  I	need	a	number	
N	for	1	

	1						

X	type	

garbage	collec9on	
9med	service	

Python	spec	
•  General	purpouse	language	
•  Focused	on	readability	
•  Interpreted	
•  Modular	
•  Dynamic	
•  Object-oriented	
•  Portable	
•  Extensible	in	C++	&	C	

Snakify	
•  Snakify	is	a	plajorm	for	e-Learning	Python	3	
•  Connect	to	h$ps://snakify.org/	
•  Sign	up	using			

•  your	@unimi.it	email	as	username	(dont	use	your	private	email,if	
possible)	

•  a	password	DIFFERENT	from	the	ona	used	for	email	

•  flag	the	op9on	"I	have	a	teacher"	
•  put	"massimo.marchi@unimi.it"	in	the	field	"Teacher's	email"	

